ZUSAMMENFASSUNG

Die Reduktion von Normuscaron (IIb) mit Borwasserstoff führte wie die meisten andern bisher untersuchten Reduktionsmethoden zu allen 4 Norbasen (III, IIIa, IIIb, IIIc) der Muscarinreihe, für deren chromatographisch-analytische Bestimmung ein einfaches, zuverlässiges System gefunden wurde. Zwei stereoisomere Verbindungen mit der Struktur des N-Benzylderivats II wurden nebst dem N, N-Bisnormuscaron (IIa) erstmals hergestellt.

Ausgehend von 2-Methyl-4,5-dicarbäthoxy-tetrahydrofuran-3-on (VI) gelang die Herstellung der drei stereoisomeren, racemischen, bicyclischen N-Methylsuccinimide IX, IX a, IX b, eines 2,5-Dimethyl-3-hydroxy-tetrahydrofuro[2,3-c]pyrrolidins (X) und dessen Methojodids X a.

Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule, Zürich

LITERATURVERZEICHNIS

- [1] 14. Mitt.: E. HARDEGGER, N. CHARIATTE & N. HALDER, Helv. 49, 580 (1965).
- [2] E. HARDEGGER, H. CORRODI & N. CHARIATTE, Helv. 44, 1193 (1961).
- [3] H. CORRODI, E. HARDEGGER, F. KÖGL & P. ZELLER, Experientia 13, 138 (1957); N. CHARIATTE, Diss. ETH, Zürich, Prom. Nr. 2978 (1960).
- [4] C. H. EUGSTER, F. HÄFLIGER, R. DENSS & E. GIROD, Helv. 41, 205 (1958).
- [5] Vgl. dazu C.H. EUGSTER, Advances in Organic Chemistry, Vol. II, 427 (1960).
- [6] C.H. EUGSTER, F. HÄFLIGER, R. DENSS & E. GIROD, Helv. 41, 705 (1958).
- [7] C. H. EUGSTER, Helv. 39, 1023 (1956).
- [8] E.C.ASHLY, J. Amer. chem. Soc. 81, 4791 (1958).
- [9] G.ZWEIFEL & H.C. BROWN, Organic Reactions 13, 1 (1963).
- [10] H. Corrodi, E. Hardegger & F. Kögl, Helv. 40, 2454 (1957).
- [11] F.A.Askew, R.B.BOURDILLON, T.A.WEBSTER & Mitarb., Proc. Roy. Soc. B 107, 76, 91 (1930); 108, 3040 (1931).

130. Darstellung und strukturelle Eigenschaften von Ni(CN)₂, 2H₂O und Ni(CN)₂, 1¹/₂ H₂O

von A. Ludi und R. Hügi

(25. IV. 67)

1. Einleitung. – Im Gegensatz zu den eingehend untersuchten Clathraten des Nickelcyanids [1] besitzt man für die Nickelcyanide der allgemeinen Zusammensetzung Ni(CN)₂, nH₂O keine zuverlässigen Daten über Darstellung, Wassergehalt und Struktur. In einer kürzlich erschienenen Zusammenstellung über Cyanidverbindungen der Übergangsmetalle geben CHADWICK & SHARPE [2] Hydratstufen von 2, 3, 4 und 7 H₂O pro Ni(CN)₂ an, allerdings ohne Erwähnung der Herstellungsmethoden. Die häufig verwendete Methode von HOFMANN & HÖCHTLEN [3] zur Darstellung von Ni(CN)₂, 4H₂O bzw. Ni(CN)₂, 3H₂O [4] führt nicht zu Hydraten, sondern zu einem Ammoniakat-Hydrat der Zusammensetzung Ni(CN)₂, NH₃, $1/_4$ H₂O [5]. Da keine röntgenographischen Daten der reinen Hydrate vorliegen, haben wir wasserhaltige Nickelcyanide nach verschiedenen Methoden hergestellt und ihre strukturellen Eigenschaften untersucht. 2. Experimentelles. – 2.1. Analysenmethoden. Nickelgehalt: Nach Aufschluss mit konz. Schwefelsäure komplexometrisch ermittelt.

Cyanidbestimmung: Es wird die Probe mit Silbernitratlösung umgesetzt und nach Abtrennung des Silbercyanids das unverbrauchte Silber potentiometrisch titriert.

Wassergehalt: Einerseits als Differenz von Nickel und Cyanid auf 100%, andererseits thermogravimetrisch bestimmt.

Dichte: Verdrängungsmethode mit Dekalin.

2.2. Darstellung der Substanzen. – 2.2.1. $Ni(CN)_2$, 2 H_2O . Zu einer siedenden Lösung von 6 g $K_2[Ni(CN)_4]$, H_2O in 1 l Wasser werden während 48 Std. 60 ml 1 N H_2SO_4 getropft [6]. Der entstehende blass-violette Niederschlag wird abfiltriert, in 0.01 N H_2SO_4 aufgeschlämmt, wieder filtriert, mit Alkohol gewaschen und bei 60°C getrocknet. Dichte: 1,82 g/cm³.

Ni(CN)₂, 2 H₂O Ber. Ni 40,00 CN 35,45 H₂O 24,55% Gef. Ni 39,6 CN 35,8 H₂O 24,5 %

Je nach Trocknungsart kann der Wassergehalt zwischen 2 und 2,5 H_2O pro $Ni(CN)_2$ variieren, ohne dass in den Röntgen-Diagrammen Unterschiede auftreten.

Bei schnellerer Zersetzung des Tetracyanonickelates (II) entstehen sehr feinteilige Präparate mit stark verbreiterten Röntgen-Reflexen. Ebenfalls sehr feinteiliges Ni(CN)₂, 2 H₂O fällt bei der Umsetzung äquivalenter Lösungen von K₂[Ni(CN)₄], H₂O und NiSO₄, 6 H₂O an.

Fig. 1. Vorrichtung für die simultane Fällung

1. Synchronmotor mit wählbarer Untersetzung (Fa. BAUER, St. Aubin). 2. Gewindespindel. 3. Metalljoch mit Zahnstange. 4. Graduierter Glaszylinder mit eingeschliffenem Glaskolben (Kolbenprober nach Dr. SCHMIDT, Fa. DARGATZ, Hamburg). 5. Rückflusskühler. 6. Kapillarrohr.

2.2.2. $Ni(CN)_2$, $1^{1}/_2 H_2O$. Je 100 ml 0,2 N NiSO₄, 6 H₂O und 0,2 N KCN werden während 72 Std. gleichzeitig zu 200 ml siedendem, mit 2 ml 2 N H₂SO₄ versetztem Wasser gegeben (vgl. Fig. 1). Der graublaue Niederschlag wird wie Ni(CN)₂, 2 H₂O gewaschen und getrocknet. Dichte: 1,98 g/cm³. Ni(CN)₂, $1^{1}/_2$ H₂O Ber. Ni 42,61 CN 37,77 H₂O 19,62% Gef. Ni 42,5 CN 37,5 H₂O 19,3 % Der Wassergehalt kann ohne Einfluss auf das Röntgen-Diagramm zwischen 1,5 und 2 schwanken.

Die in der Literatur als grünblau oder apfelgrün bezeichneten Produkte entstehen bei Fällung ohne Säurezusatz. Sie sind aber unrein, ihre Röntgen-Diagramme zeigen zusätzlich die Linien von Ni(OH)₂. Schnelle Zugabe einer Kaliumcyanidlösung zu einer Nickellösung führt zu Produkten mit stark verbreiterten Röntgen-Linien sowohl von Ni(CN)₂, 2 H₂O als auch von Ni(CN)₂, 1¹/₂ H₂O.

2.3. Röntgenographische Untersuchungen. Die Pulverdiagramme wurden mit einer Kamera nach GUINIER-DEWOLFF mit CuKa- oder FeKa-Strahlung hergestellt. Interner Standard: Kaliumalaun (für d-Werte > 3,1); KCl (für d-Werte < 3,1).

3. Ergebnisse. – Die Indizierung des Röntgen-Diagrammes von Ni(CN)₂, 2 H₂O ergibt eine kubische Elementarzelle von 10,10 \pm 0,01 Å Kantenlänge.

Die ungemischten, einer flächenzentrierten Zelle zugehörigen Reflexe sind sehr intensiv (ausgenommen 222), während die der primitiven Zelle entsprechenden Linien zum Teil erst bei starker Überbelichtung auftreten. Die mit den intensiven Reflexen festgelegten Lagen der Nickel-Ionen bilden eine kubisch-flächenzentrierte Elementarzelle, die derjenigen vieler polymerer Übergangsmetallcyanide, z. B. Preussischblau

I	d _{ber.}	dbeob.	hkl	I	d _{ber.}	d _{beob.}	hkl
<1	10,10	10,01	100	9	2,259	2,257	420
<1	7,13	7,13	110	< 1	2,204	2,202	421
1	5,83	5,82	111	< 1	2,153	2,151	332
10	5,05	5,03	200	9	2,062	2,060	422
$<\!\!1$	4,52	4,53	210	$<\!\!1$	2,019	2,019	500/430
1	4,12	4,12	211	$<\!\!1$	1,980	1,978	510/431
10	3,57	3,57	220	< 1	1,943	1,942	511/333
2	3,36	3,37	300/221	$<\!\!1$	1,875	1,874	520/432
5	3,19	3,19	310	$<\!\!1$	1,843	1,843	521
3	3,04	3,04	311	8	1,785	1,785	440
3	2,800	2,800	320	< 1	1,757	1,757	522/441
2	2,698	2,698	321	1	1,732	1,731	530/433
10	2,524	2,522	400	8	1,682	1,682	600/442
1	2,450	2,450	410/322	8	1,597	1,596	620
2	2,378	2,378	411/330	4	1,523	1,522	622
3	2,317	2,317	331	4	1,457	1,457	444

Tabelle 1. d-Werte und Indices von $Ni(CN)_2$, $2H_2O$ (FeKa)

 $\rm KFe^{III}[Fe^{II}(CN)_6]$, entspricht. Im Gitter dieser Cyanide ist jedes Metall-Ion von sechs Cyanid-Ionen oktaedrisch umgeben, wobei je nach Wertigkeit der Metall-Ionen zusätzliche Kationen in den Zwischenräumen sitzen [7]. Eine analoge Koordination mit sechs Cyanid-Ionen würde bedingen, dass in der Elementarzelle von Ni(CN)₂, 2H₂O vier zusätzliche Nickel-Ionen auf die Achtelswürfel verteilt wären (Fig. 2). Die damit berechnete röntgenographische Dichte von 2,84 g/cm³ ist jedoch mit der gemessenen Dichte (1,82 g/cm³) nicht vereinbar.

Zu einer guten Übereinstimmung von gemessener und röntgenographischer Dichte (vgl. Tab. 3) gelangt man durch die Annahme, dass die eine Hälfte der Nickel-Ionen planar von vier Kohlenstoffatomen der Cyanidgruppen umgeben ist. Die andere Hälfte ist im Mittel von vier Stickstoffatomen der Cyanid-Ionen und zwei Wassermolekeln pseudooktaedrisch koordiniert. Dabei müssen diese $[NiN_4(H_2O)_2]$ -Gruppen zu gleichen Anteilen sowohl in der *cis*- wie in der *trans*-Anordnung vorliegen, damit

Tabelle 2. d-Werte und Indices von $Ni(CN)_2$, $1^1/_2 H_2O$ (FeKa)

I	$d_{\rm ber.}$	$d_{\rm beob.}$	hkl	I	dber.	$d_{\rm beob.}$	hkl
3	7,49	7,47	011	3	1,969	1,970	071
3	7,07	7,04	020	2	1,929	1,930	261
1	5,52	5,51	021	2	1,927	1,926	134
3	5,07	5,05	120	1	1,920	1,919	243
10	4,42	4,42	002	1	1,900	1,899	171
10	4,40	4,39	121	1	1,887	1,885	204
1	4,16	4,15	031	1	1,872	1,873	044
7	3,64	3,63	200	1	1,871	1,870	303
7	3,61	3,61	131	2	1,818	1,819	400
10	3,53	3,54	040	1	1,804	1,805	262
1	3,22	3,22	032	1	1,803	1,802	410
1	3,18	3,18	140	5	1,783	1,785	163
1	2,99	2,99	141	5	1,780	1,780	401/172
3	2,945	2,940	132	9	1,767	1,768	080
3	2,943	2,936	003	9	1,765	1,766	005/270
10	2,881	2,886	013	1	1,752	1,754	015
<1	2,728	2,729	103	5	1,717	1,718	180
8	2,692	2,695	051	1	1,713	1,712	025
5	2,679	2,680	113	3	1,681	$1,\!680$	402
< 1	2,638	2,630	150	3	1,669	1,671	412
7	2,545	2,546	123	3	1,664	1,663	244
7	2,534	2,532	240	< 1	1,654	1,653	343
10	2,496	2,495	033	10	1,639	1,640	082/272
1	2,361	2,361	133/060	10	1,634	1,635	422
2	2,262	2,263	152/043	$<\!\!1$	1,611	1,610	064
2	2,258	2,257	213	< 1	1,590	1,591	324
< 1	2,241	2,244	160	10	1,580	1,581	045
1	2,219	2,222	321	2	1,547	1,547	403
5	2,207	2,208	004	2	1,542	1,542	334
10	2,181	2,183	014	1	1,511	1,511	423
10	2,172	2,169	161	1	1,505	1,506	235
10	2,159	2,160	143	< 1	1,498	1,498	055
3	2,112	2,109	104	5	1,490	1,491	074
1	2,094	2,093	331	3	1,482	1,483	344
2	2,078	2,079	062	2	1,480	1,481	092
2	2,058	2,060	233	1	1,470	1,470	433
3	2,039	2,040	053	1	1,460	1,461	174
2	2,035	2,035	322	3	1,454	1,454	500
2	2,023	2,027	124	3	1,445	1,445	452

die der ermittelten Elementarzelle entsprechende kubische Symmetrie resultiert. Dieser Strukturvorschlag wird gestützt durch die Tatsache, dass das RÖNTGEN-Diagramm durch die thermische Entfernung des einen H_2O , das in Lücken des weitmaschigen Gitters sitzt, nicht verändert wird. Ebenso stehen die Absorptionsspektren im sichtbaren Licht und die magnetischen Momente [8] mit diesem Strukturmodell in Übereinstimmung.

Der Abstand Ni-CN-Ni ergibt sich zu 5,05 Å, verglichen mit 5,12 Å im Ni(CN)₂, NH₃, $\frac{1}{4}$ H₂O (5).

Die Indizierung des sehr linienreichen Röntgen-Diagramms von $Ni(CN)_2$, $1^1/_2H_2O$ führt auf eine orthorhombische Elementarzelle.

Die Gitterkonstanten betragen $a = 7.2 \pm 0.01$ Å, $b = 14.08 \pm 0.06$ Å, $c = 8.83 \pm 0.01$ Å. Aus der gemessenen Dichte von 1.98 g/cm³ ergibt sich Z = 8, damit eine röntgenographische Dichte von 2.02 g/cm³. Die Elementarzelle von Ni(CN)₂, 1¹/₂ H₂O ist nahezu identisch mit derjenigen von Ni(CN)₂, NH₃, $\frac{1}{4}$ H₂O (vgl. Tab. 3). Fig. 3 zeigt eine schematische Wiedergabe dieser Struktur, wobei übersichtshalber die Cyanid-Ionen weggelassen sind. Das am Stickstoff-koordinierten Nickel sitzende Wasser entspricht der Zusammensetzung Ni(CN)₂, H₂O. Der Rest des Wassers befindet sich auch hier in Lücken des grossmaschigen Gitters.

Fig. 2. Elementarzelle von Ni(CN)₂, 2 H₂O (nur Nickel-Ionen)

Fig. 3. Die Struktur von $Ni(CN)_2$, $1^1/_2 H_2O$

Bei der Struktur von Ni(CN)₂, $1^{1}/_{2}$ H₂O handelt es sich um ein Schichtengitter mit geordneter Verteilung von planaren [NiC₄]-Gruppen und tetragonal verzerrten oktaedrischen [NiN₄(H₂O)₂]-Gruppen innerhalb einer Schicht. Die *c*-Achse steht senkrecht auf der Schichtebene, die dritte Schicht ist mit der ersten identisch. Die thermische Entfernung von Wasser bis zum Monohydrat erfolgt ohne strukturelle Veränderungen.

Es zeigt sich also, dass die zwei durch Fällung bzw. durch Zersetzung des Cyanokomplexes dargestellten feinkristallinen Nickelcyanide Ni(CN)₂, nH₂O sehr ähnliche Mikrostrukturen besitzen. In beiden Fällen sind je zwei Arten von Ni-Ionen in gleicher Zahl vorhanden: ein planar von vier Kohlenstoffatomen der Cyanid-Ionen umgebenes und ein von vier Cyanidstickstoffatomen und zwei Wassermolekeln pseudooktaedrisch koordiniertes.

In beiden Verbindungen ist im ganzen pro $Ni(CN)_2$ 1 H₂O koordinativ gebunden, während der Rest des Wassers in Lücken der verhältnismässig lockeren Gitter sitzt.

	Ni(CN) ₂ , 2 H ₂ O	$Ni(CN)_2, 1^{1/2}H_2O$	Ni(CN) ₂ , NH ₃ , ¹ / ₄ H ₂ O [5]
$\overline{a(\mathrm{\AA})}$	10,10	7,27	7,24
$b(\mathbf{A})$	_	14,08	14,32
c(Å)	_	8,83	8,74
$V(Å^3)$	1030	904	906
Ζ	8	8	8
$D_{\rm gem} ({\rm g/cm^3})$	1,82	1,98	1,98
$\widetilde{D_{ro}}$ (g/cm ³)	1,89	2,02	1,95

Tabelle 3. Gitterdaten von $Ni(CN)_2$, 2 H_2O , $Ni(CN)_2$, $1^1/_2 H_2O$ und $Ni(CN)_2$, NH_3 , $1/_4 H_2O$

In der Art der Verknüpfung der zwei Koordinationspolyeder unterscheiden sich die beiden Gitter. Das graublaue Ni(CN)₂, $1^{1}/_{2}$ H₂O weist eine Schichtstruktur mit regelmässiger Anordnung der planaren [NiC₄]- und der oktaedrischen *trans*-[NiN₄- (H₂O)₂]-Gruppen auf (Fig. 3), analog der Struktur von Ni(CN)₂, NH₃, $\frac{1}{4}$ H₂O. Das blass-violette Ni(CN)₂, 2H₂O dagegen besitzt eine kubische Elementarzelle der Preussischblau-Struktur, wahrscheinlich mit unregelmässiger Verteilung der Wassermolekeln auf die das Oktaeder ergänzenden Koordinationsstellen des von Stickstoff umgebenen Nickel-Ions.

Über die spektroskopischen und magnetischen Eigenschaften dieser Verbindungen soll demnächst berichtet werden.

Herrn Prof. Dr. W.FEITKNECHT und Herrn Prof. Dr. P.SCHINDLER danken wir für das der Arbeit entgegengebrachte Interesse. Dem Schweizerischen Nationalfonds sind wir für finanzielle Unterstützung zu Dank verpflichtet.

SUMMARY

 $Ni(CN)_2$, 2 H₂O is prepared as a powder of a very light violet color by slow addition of very dilute sulfuric acid to a boiling aqueous solution of $K_2[Ni(CN)_4]$, H₂O. It has a cubic unit cell with a cell edge of 10.10 Å. The nickel ions form a cubic face-centered lattice analogous to the structure of Prussian Blue.

The greyish blue Ni(CN)₂, $1^{1}/_{2}$ H₂O is precipitated by the simultaneous addition of dilute solutions of NiSO₄ and KCN to boiling water. The unit cell is orthorhombic,

the cell constants being a = 7.27 Å, b = 14.08 Å, c = 8.83 Å. This structure is very closely related to that of Ni(CN)₂, NH₃, $\frac{1}{2}$ H₂O.

Institut für anorganische, analytische und physikalische Chemie der Universität Bern

LITERATURVERZEICHNIS

- H. M. POWELL in L. MANDELCORN, «Non-Stoichiometric Compounds», Academic Press, New York & London 1964, pp. 438; R. S. DRAGO, J. T. KWON & R. D. ARCHER, J. Amer. chem. Soc. 80, 2667 (1958).
- [2] B.M. CHADWICK & A.G. SHARPE, Advances Inorg. Chemistry Radiochemistry 8, 83 (1966).
- [3] K.A. HOFMANN & F. HÖCHTLEN, Chem. Ber. 36, 1149 (1903).
- [4] P. RÂY & H. SAHU, J. Indian chem. Soc. 23, 161 (1946).
- [5] J.H. RAYNER & H.M. POWELL, J. chem. Soc. 1958, 3412.
- [6] A. WEISS & R. FRANK, Kolloid-Z. 177, 47 (1961).
- [7] J.F.KEGGIN & F.D.MILES, Nature 137, 577 (1936).
- [8] A. LUDI & R. HÜGI, in Vorbereitung.

131. Über Pyrrolizidinchemie

8. Mitteilung [1]

Synthese von 1,7-Dioxopyrrolizidin¹)

von M. Viscontini und H. Bühler

(22. IV. 67)

Nachdem die geplante Synthese des 3-Hydroxyprolins durch elektrochemische Reduktion nicht die erwarteten Ausbeuten ergeben hatte [1], wandten wir uns einer direkten Synthese des 1,7-Dioxopyrrolizidins (I) zu. Als erste wichtige Zwischenstufe haben wir zunächst 1-Äthoxycarbonyl-3-oxopyrrolidin-4-carbonsäure-äthylester (II), dessen Synthese in der Literatur schon mehrfach beschrieben worden ist [2] [3] [4], nach [4] mit einigen Abänderungen hergestellt, die im experimentellen Teil beschrieben werden.

Für den nächsten Schritt der Synthese, die ebenfalls schon beschriebene [3] Decarboxylierung in 4-Stellung, haben wir anstelle von Salzsäure Oxalsäure verwendet, was bessere Ausbeuten und ein reineres 1-Äthoxycarbonyl-3-oxo-pyrrolidin (III) ergab.

Die Versuche, III verseifend zu 3-Oxopyrrolidin (IV) zu decarboxylieren, führten aber nur zu verharzten Produkten. Derselben Schwierigkeit waren RUZICKA & SPEI-DEL [5] begegnet, als sie IV auf einem anderen Weg herstellen wollten. Anscheinend ist dieses sekundäre α -Oxoamin ebenso reaktionsfähig wie die aliphatischen Homologe, denn die N-substituierten 3-Oxopyrrolidine sind stabiler [6].

Die durch die Unbeständigkeit von 3-Oxopyrrolidin (IV) hervorgerufenen Schwierigkeiten konnten jedoch durch Ketalisierung der Oxogruppe von III mit Äthylen-

¹) Teil der Dissertation von Herrn H. BÜHLER, Universität Zürich, 1966.